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Abstract. We consider a set of localized Wannier functions which can be used to describe
the Bloch bands of one-dimensional Hamiltonians whose associated Weyl function is periodic
under a hexagonal lattice of translations in phase space. These Hamiltonians can be used to
describe electrons on two-dimensional hexagonal lattices penetrated by a magnetic field. The
effect on the Wannier functions of aπ/3 rotation of the phase plane is considered. The resulting
transformation is found to be surprisingly complicated when the quantized Hall conductance
integer for the Bloch band is non-zero.

1. Introduction

This paper considers a calculation of the properties of a set of Wannier functions for the
phase-space lattice Hamiltonian (defined by Wilkinson in an earlier paper [1]) under aπ/3
rotation of the phase plane. The details of the construction of these Wannier functions are
complicated and readers are referred to [1] for a discussion of their evaluation.

These Wannier functions are relevant for describing Bloch solutions of Hamiltonians
which are periodic functions of the operatorsx̂ and p̂. Hamiltonians of this form [2] (or
their related Schr̈odinger equations [3–5]) occur in the problem of two-dimensional Bloch
electrons in a magnetic field where the commutator [x̂, p̂] = ih̄ and h̄ is related to the
dimensionless parameterβ which measures the ratio of the flux quantum(h/e) to the flux
through a unit cell of the potential(BA). [2–4] concern perturbations of electrons in Landau
levels due to a periodic potential, in this caseβ = h/eBA. [5] concerns electrons perturbed
by a weak magnetic field, in which caseβ = eBA/h. In the case where the unit cell has
area 4π2 thenh̄ = 2πβ. Bloch solutions exist if the parameterβ is a rational number.

The Hamiltonian may have rotational symmetries in its phase plane. These symmetries
are important in determining the structure of the spectrum of the Hamiltonian; for irrational
β the spectrum is believed to be a Cantor set of zero measure if the Hamiltonian has
centres of three-, four- or six-fold symmetry in the phase plane [6–10]. This result can be
demonstrated if the rotational properties of the Wannier functions are known [1, 17]. The
symmetries of the phase plane arise naturally when the two-dimensional periodic potential
possesses such symmetries [11]. In order to study the effects of these symmetries it will be
useful to understand the effect of such a rotation on a set of basis states for the eigenfunctions
of the Hamiltonian. For rationalβ Bloch’s theorem is applicable and the eigenstates ofĤ

are Bloch states|Bν(k, δ)〉, wherek and δ are Bloch wavevectors. It is not, in general,
possible to construct a complete basis of well localized Wannier functions for Bloch bands
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in the presence of magnetic fields [12] by simply integrating over the Bloch wavevectors.
However, Wilkinson [1] has shown how a set of generalized Wannier functions may be
defined that do form a complete basis for the Bloch band (the details of which are given
in the following section). If we applyR̂i , an ith-(three, four or six)fold rotation operator,
to the Bloch states|Bν(k, δ)〉 of the Hamiltonian, the resulting states will be eigenfunctions
of the rotated HamiltonianĤ (Ri) = R̂iĤ R̂

−1
i . The natural expectation is that the Wannier

functions constructed from these new Bloch states will be related to the initial Wannier
function by the relation

|φ̃〉 = R̂i |φ〉. (1.1)

Surprisingly it turns out that this is only valid when the quantized Hall conductance integer
for theνth Bloch band,Mν , is zero. (Thoulesset al [13] discuss the role of the integerMν

in the Hall effect of periodic systems and show thatMν is the Chern integer of the Bloch
band.)

WhenMν is non-zero we have a set of|Nν | Wannier functions,|φ(ν)µ 〉, µ = 1, . . . , |Nν |
[1], whereNν is an integer related toMν by 1 = qMν + pNν . In the four-fold case it is
found [1] that

|φ̃(ν)µ 〉 = Ŝ(pNν)R̂4r̂4|φ(ν)µ 〉 (1.2)

whereŜ(η) is a unitary operator which stretches thex-axis by a factorη and r̂4 is a rotation
operator acting on the labels of the Wannier functions. The full definitions of these operators
will be given later. In this work we compute the transformation of the Wannier functions
under a six-fold rotation of the Bloch states. We find that the rotation operator has still
more complicated features

|φ̃(ν)µ 〉 = T̂ (0, απpNνa)Q̂(−q2M2
ν /

√
3)Ŝ(pNν)R̂6r̂6t̂ (0, αNν/2)|φ(ν)µ 〉. (1.3)

Here a = (2/
√

3)1/2, Q̂ is an operator which shears the phase space,T̂ is a phase-space
translation operator,̂t is a translation operator acting on the labels of the Wannier functions
andα takes the value 0 or 1 ifNν ×Mν is an even or odd number, respectively.

Section 2 describes the set of Wannier functions introduced by Wilkinson [1]. These
Wannier functions are constructed for Hamiltonians defined on a square lattice in phase
space. In section 3 a Hamiltonian defined on a hexagonal lattice in phase space is
introduced and the properties are characterized under six-fold rotations. It is shown how
this Hamiltonian can be unitarily transformed to a Hamiltonian defined on a square lattice
and how the Wannier functions are related to those on the square lattice. It is also shown
how a six-fold rotation operator on the hexagonal lattice is represented on the square lattice.
Section 4 considers the effect on the square lattice Wannier functions of such a rotation of
the Bloch states and constructs a rotation operator for the Wannier functions, from this a
rotation operator for the hexagonal lattice Wannier functions can be obtained.

2. Phase-space Wannier functions

We summarize here the relevant results from [1]. Hamiltonians defined on a square lattice
in phase space are considered. The area of the unit cell in the phase plane of the classical
Hamiltonian is taken as 4π2. The Hamiltonian takes the form

H(x̂, p̂) =
∑
nm

HnmT̂ (nh̄,mh̄)
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where

T̂ (X, P ) = exp[i(P x̂ −Xp̂)/h̄]. (2.1)

T̂ (X, P ) is a phase-space translation operator and will be widely used in the following
work. These operators have a non-commutative algebra of the same form as the magnetic
translation operators introduced by Zak [14].

T̂ (X1, P1)T̂ (X2, P2) = exp[i(X2P1 −X1P2)/2h̄]T̂ (X1 +X2, P1 + P2). (2.2)

Whenβ = p/q, the Bloch states|Dν(k, δ)〉 of the Hamiltonian (2.1) can be obtained from
a set of|Nν | Wannier functions|8(ν)

µ 〉. (We will reserve the notation|Bν(k, δ)〉 and |φ(ν)µ 〉
for the Bloch and Wannier states of Hamiltonians defined on hexagonal lattices.)

|Dν(k, δ)〉 = C

|Nν |∑
µ=1

∞∑
n=−∞

∞∑
m=−∞

exp

[
− 2π i

h̄

(
mδ + n(k + µh̄)

Nν

)]
×T̂ (0, 2πm)T̂ (−2πn/Nν, 0)T̂ (0, qMνk)|8(ν)

µ 〉 (2.3)

C is a normalization constant. If the Wigner function of the Wannier states|8(ν)
µ 〉 is smooth

and localized in phase space then these Bloch states have the following periodicity properties

|Dν(k + 2π/q, δ)〉 = exp[iqMνδ/p]|Dν(k, δ)〉
|Dν(k, δ + 2πp/q)〉 = |Dν(k, δ)〉. (2.4)

The Wannier states can be obtained from the Bloch states|Dν(k, δ)〉 by inverting the relation
(2.3)

|8(ν)
µ 〉 = q2

4π2√pNνC
|Nν |∑
µ′=1

exp[2π iµµ′/Nν ] T̂ (2πµ′/Nν, 0)

×
∫ 2π/q

0
dk

∫ 2π/q

0
dδ exp[iqkµ′] T̂ (0,−qMνk)|Sν(k, δ)〉 (2.5)

where

|Sν(k, δ)〉 = 1√
p

p∑
j=1

|Dν(k, δ + 2πj/q)〉. (2.6)

|Sν(k, δ)〉 is also a valid Bloch state of the Hamiltonian (2.1). It should be noted that
the Wannier function depends on the choice of gauge for the Bloch states. A gauge
transformation may be applied to the Bloch states|Bν(k, δ)〉 → exp[iθ(k, δ)]|Bν(k, δ)〉 and
the Wannier functions constructed from these states will still be smooth and well localized
provided (2.4) still holds. We shall also introduce here a translation operator analagous to
the phase-space translation operator (2.1) which acts on the labels of the Wannier functions

t̂ (n1, n2)|8(ν)
µ 〉 = exp

[
2π iMν

Nν

(
µ− 1

2n1

)
n2

]
|8(ν)

µ−n1
〉. (2.7)

These operators have a similar algebra to the translation operatorsT̂ (X, P ) introduced in
(2.1)

t̂ (n1, n2)t̂(n
′
1, n

′
2) = exp

[
2π iMν

Nν

(
n2n

′
1 − n1n

′
2

2

)]
t̂ (n1 + n′

1, n2 + n′
2) (2.8)

n1 is clearly restricted to integer values. We will place no such restriction onn2 in this
paper.
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3. Mapping of hexagonal-lattice Hamiltonian to square lattice

In this section we describe how to relate the eigenstates of Hamiltonians defined on
a hexagonal lattice to those of a Hamiltonian of the form (2.1). A general quantum
Hamiltonian defined on a hexagonal lattice can be obtained by quantizing the following
classical Hamiltonian, expressed as a Fourier sum, under the Weyl quantization

H(H)(x, p) =
∑
nm

Hnm exp[ia((m− 1
2n)x −

√
3

2 np)] (3.1)

which can be expressed, in terms of the phase-space translation operators, as

H(H)(x̂, p̂) =
∑
nm

HnmT̂ (
√

3
2 nh̄a, (m− 1

2n)h̄a). (3.2)

In these expressionsa = (2/
√

3)1/2 and is chosen to ensure that the unit cell of the
Hamiltonian in the classical phase space has area 4π2. If h̄ = 2πβ = 2πp/q then the
eigenfunctions of (3.2) are Bloch states.

The Weyl quantization [15] allows one to quantize the Hamiltonian in such a way that
it is invariant under linear transformations of the phase plane. Among such transformations
(which are generated by the action of quadratic Hamiltonians) are rotations and shearings of
the phase plane. This property of the Weyl quantization is important in this context because
rotations and shearings of the classical phase space correspond to analogous transformations
of the crystal lattice in real space [11], [16] and [17] contain discussions of these points
and other results on the Weyl quantization.

A π/3 rotation is generated by the operatorR̂6 whose effect on the translation operators
is defined by

R̂6T̂ (X, P ) = T̂ ( 1
2X +

√
3

2 P,
1
2P −

√
3

2 X)R̂6. (3.3)

The operatorR̂6 can be represented as

R̂6 = exp[−i(x̂2 + p̂2 + h̄)π/6h̄] (3.4)

which is an operator that rotates the Wigner function [18] of a state clockwise through
π/3 rad. Applying this operator to the Hamiltonian defined in (3.2) we see that the
Hamiltonian is symmetric under this rotation ifHnm = Hm−n,n.

Now we consider a sequence of unitary transformations that map the Hamiltonian (3.2),
defined on a hexagonal lattice, onto one of the form (2.1). First we will shear the lattice,
this has the effect on the classical phase space of transforming the phase-space coordinates
to

x → x ′ = x p → p′ = p − 1√
3
x. (3.5)

The operator which generates this shearing of the quantum Hamiltonian is

Q̂(s) = exp[−isx̂2/2h̄] s = 1√
3

(3.6)

and

Q̂(s)T̂ (X, P ) = T̂ (X, P + sX)Q̂(s). (3.7)

Under this transformation the Hamiltonian is now defined on a rectangular lattice

H(R)(x̂, p̂) =
∑
nm

HnmT̂ (
√

3
2 nh̄a,mh̄a). (3.8)
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We will now complete the transformation to a square lattice by the action of an operator
Ŝ(1/a). Ŝ(η) is a unitary operator which stretches thex-axis by a factorη, and is defined
by the relation

〈x|Ŝ(η)|ψ〉 =
√

|η|〈ηx|ψ〉. (3.9)

The operatorŝS(η) and T̂ (X, P ) have the following commutation rule

Ŝ(η)T̂ (X, P ) = T̂

(
X

η
,Pη

)
Ŝ(η). (3.10)

After this operation the Hamiltonian is in the form (2.1) which we will callĤ (S) and, for
rationalβ, Ĥ (S) has Bloch eigenstates|Dν(k, δ)〉.

The statesQ̂(−s)Ŝ(a)|Dν(k, δ)〉 are, therefore, eigenstates of the HamiltonianĤ (H).
The Wannier functions for Bloch states on the hexagonal lattice|φ(ν)µ 〉 can, similarly, be
obtained from the Wannier functions for the square-lattice Hamiltonian|8(ν)

µ 〉. In terms of
these Wannier states the eigenstates of (3.2) can be found:

|Bν(k, δ)〉 = Q̂(−s)Ŝ(a)|Dν(k, δ)〉 = C

|Nν |∑
µ=1

∞∑
n=−∞

∞∑
m=−∞

exp

[
− 2π i

h̄

(
mδ + n(k + µh̄)

Nν

)]
×T̂ (0, 2πma)T̂ (−2πn/aNν, πna/Nν)T̂ (0, qMνka)|φ(ν)µ 〉. (3.11)

It can easily be shown that the rotation operator in the new phase space which represents
a six-fold rotation in the old space is defined by the relation

R̂T̂ (X, P ) = T̂ (P , P −X)R̂. (3.12)

In other wordsR̂ can be thought of as a 90◦ rotation followed by a shearinĝQ(1). This
operator can be represented on thex-axis as

〈x|R̂|ψ〉 = 1√
2πh̄

exp[−ix2/2h̄]
∫ ∞

−∞
dx ′ exp[ixx ′/h̄]〈x ′|ψ〉. (3.13)

4. Calculation of rotation operator for Wannier functions

In this section we consider the effect of the rotation operator of (3.12) on the states|Sν(k, δ)〉
of a Hamiltonian of the form (2.1). Readers are reminded that everything in this section
up until the last two equations is concerned with the square-lattice Hamiltonian. We will
notate the Bloch states of Hamiltonians of the form (2.1) by|Dν(k, δ)〉 and the Wannier
states constructed from them by|8(ν)

µ 〉. We will keep the notation of|Bν(k, δ)〉 and |φ(ν)µ 〉
to results pertaining to the Hamiltonian (3.2).

We shall see that the states obtained by rotating the Bloch states|Sν(k, δ)〉 are in the
form of Bloch states with different Bloch wavevectors. We will regauge the new Bloch
states such that they obey the gauge condition (2.4). These Bloch states will then be used
as a basis from which to construct the Wannier functions according to the prescription (2.5).
We are then able to calculate the transformation of the Wannier functions|8(ν)

µ 〉 generated
by the rotation.

We will consider applying the rotation operator to a particular linear combination of
degenerate Bloch states|Sν(k, δ)〉 defined in (2.6). From [1] this vector can be written

|Sν(k, δ)〉 = C
∑
m

eiqkm/pT̂ (2πm, 0)
∑
n

e−iqδnT̂ (0, 2πnp)T̂ (0, qMνk)

×
|Nν |∑
µ=1

exp[−iqkµ]|χµ〉 (4.1)
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where

|χ(ν)µ 〉 = √
pT̂ (−2πµ/Nν, 0)

|Nν |∑
µ′=1

exp[−2π iµµ′/Nν ]|8(ν)
µ′ 〉. (4.2)

If we now apply the rotation operator to this vector then after some manipulation we find
using (3.12), that

R̂|Sν(k, δ)〉 = C
∑
m

e−iqkm/pT̂ (0, 2πm)
∑
n

eiqn(k−δ+πp)T̂ (2πnp, 0)

×T̂ (qMνk, qMνk)

|Nν |∑
µ=1

e−iqkµR̂|χµ〉 = |D̃ν(k
′, δ′)〉. (4.3)

Now the sum overm indicates that the wavefunction is only non-zero at positionsxn = nh̄+k
andk′ = k− δ+πp is a Bloch wavevector for translations in thex direction. This state is,
then, of the form of a Bloch state.

Now if we consider the periodicity properties of this Bloch state|D̃ν(k
′, δ′)〉 then we

find that

|D̃ν(k + 2π/q, δ)〉 = |D̃ν(k, δ)〉
|D̃ν(k, δ + 2πp/q)〉 = exp[iqMν(δ − k − pπ)]|D̃ν(k, δ)〉. (4.4)

In order to construct smooth well localized Wannier functions (2.5) we require that the
Bloch states{|D̃ν(k, δ)〉} have the periodicity properties described in (2.4). To achieve this
we apply a gauge transformation

|D̃′
ν(k, δ)〉 = exp[iθ(k, δ)]|D̃ν(k, δ)〉. (4.5)

The functionθ(k, δ) satisfies the relationships

θ(k + 2π/q, δ)− θ(k, δ) = −qMνδ/p

θ(k, δ + 2πp/q)− θ(k, δ) = qMν(δ − k − πp).
(4.6)

We consider a gauge functionθ(k, δ) = ε1kδ+ ε2δ
2 + ε3δ and choosing the variablesε1, ε2

to satisfy (4.6) we find that

ε1 = −q2Mν/2πp ε2 = q2Mν/4πp. (4.7)

This leaves us with a relation forε3

πpMν + 2πpε3/q = −πpqMν. (4.8)

Now we must chooseε3 to satisfy (4.8). However, since phase changes of 2π are
unimportant, it is only necessary for the two sides of (4.8) to agree up to some arbitrary
multiple of 2π . For convenience later on we will choose values ofε3 depending on whether
the productNν ×Mν is an odd or an even number

ε3 = qNν/2 Nν ×Mν = odd

ε3 = 0 Nν ×Mν = even.

If we use the states|D̃′
ν(k, δ)〉 as a base to build the Wannier functions according to

(2.5), and using (4.1), (4.2), (4.3), (4.7) and (4.8) we have

|8̃(ν)
µ 〉 = q2

4π2√pNνC
|Nν |∑
µ′=1

e2π iµµ′/Nν T̂ (2πµ′/Nν, 0)
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×
∫ 2π/q

0
dk

∫ 2πp/q

0
dδ eiqkµ′

eiq2Mνkδ/2πpeiq2Mνδ
2/4πpeiε3δT̂ (0,−qMνk)

×C
∑
m

e−iqδm/p
∑
n

eiqnkT̂ (0, 2πm)T̂ (2πnp, 0)T̂ (qMνδ, qMνδ)

×
|Nν |∑
λ=1

e−iqδλT̂ (0, 2πλ/Nν)
|Nν |∑
λ′=1

e−2π iλλ′/Nν R̂|8(ν)
λ′ 〉. (4.10)

Using a result that we prove in the appendix this can be rewritten

|8̃(ν)
µ 〉 = q2

4π2√pNν
|Nν |∑
µ′=1

|Nν |∑
λ=1

e2π iµµ′/Nν T̂ (2πµ′/Nν, 0)Ôµ′,−λpT̂ (0, 2πλ/Nν)

×
|Nν |∑
λ′=1

e−2π iλλ′/Nν R̂|8(ν)
λ′ 〉 (4.11)

where

ÔNM = 4π2p

q

1√
pNν

Q̂(pqNνMν)T̂ (0, 2πm)T̂ (0, ε3h̄)

×T̂ (0, 2πpqMνN)T̂ (−2πN/Nν, 0)Ŝ(pNν). (4.12)

Now substituting forÔNM and commuting operators this expression simplifies, provided
that ε3 takes the values indicated earlier, to give

|8̃(ν)
µ 〉 = 1

Nν
√
Nν

|Nν |∑
µ′=1

|Nν |∑
λ=1

|Nν |∑
λ′=1

e2π iµµ′qMν/Nνe−2π iλλ′/Nνe2π iµ′qλ/Nν

×e−iπq2µ′2Mν/Nνe−iµ′qαπ T̂ (0, απpNν)Q̂(pqNνMν)Ŝ(pNν)R̂|8(ν)
λ′ 〉 (4.13)

whereα = 1 if Nν ×Mν is odd and zero otherwise. Performing the summation overλ we
can further simplify this expression to leave us with

|8̃(ν)
µ 〉 = R̂8|8(ν)

µ 〉 (4.14)

where

R̂8 = T̂ (0, απpNν)Q̂(pqNνMν)Ŝ(pNν)R̂û. (4.15)

The operator̂u acts on the labels of the Wannier functions as follows

û|8(ν)
µ 〉 = 1√

Nν

|Nν |∑
µ′=1

e2π iMν [µµ′− 1
2µ

′2]/NνeiπMναµ
′ |8(ν)

µ′ 〉. (4.16)

The definition ofû in (4.16) contains three terms in the exponent. The first two resemble a
Fourier transform and a shearing (which constitutes a six-fold rotation on the square lattice).
The third can be considered as a translation operator (2.7) acting on the Wannier function.
We therefore definêu = r̂ t̂ (0, αNν/2) where

r̂|8(ν)
µ 〉 = 1√

Nν

|Nν |∑
µ′=1

e2π iMν(µµ
′−µ′2/2)/Nν |8(ν)

µ 〉. (4.17)

If we consider the commutation of this operatorr̂ with the translation operator̂t(n1, n2) we
find that

t̂ (n1, n2)r̂ = r̂ t̂ (n2, n2 − n1) (4.18)
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which is reminiscent of the commutation of̂R and T̂ (X, P ) defined in (3.12). Sôr is a
rotation operator acting on the labels of the Wannier functions, and in terms of this we can
write the total rotation operator for the Wannier functions as

R̂8 = T̂ (0, απpNν)Q̂(pqNνMν)Ŝ(pNν)R̂r̂ t̂ (0, αNν/2). (4.19)

The rotation operator for the Wannier functions of the hexagonal lattice|φ(ν)µ 〉 can be
obtained by performing the operation

R̂φ = Q̂(−s)Ŝ(a)R̂8Ŝ(1/a)Q̂(s). (4.20)

s anda take the values 1/
√

3 and(2/
√

3)1/2, respectively. Applying these operations we
find

R̂φ = T̂ (0, απpNνa)Q̂(−q2M2
ν /

√
3)Ŝ(pNν)R̂6r̂6t̂ (0, αNν/2). (4.21)

This, then, is the form of the six-fold rotation operator for the set of Wannier states|φ(ν)µ 〉
defined in section 3.
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Appendix

In order to proceed from (4.10) we will derive an expression relating the Fourier coefficients
ÔNM of the operator

Ô(k, δ) = eiq2Mνkδ/2πpe−iq2Mνδ
2/4πpeiε3δT̂ (0,−qMνk)

×
∑
n′

∑
m′

e−iqδm′/peiqn′kT̂ (0, 2πm′)T̂ (2πn′p, 0)T̂ (qMνδ, qMνδ) (A.1)

to a stretching and shearing of the phase plane.
Taking m′ = m + JMνp and n′ = n + JMν where J is an arbitrary integer and

considering〈x|Ô(k, δ)|ψ〉 whenx = Jh̄+ δ we have

〈x|Ô(k, δ)|ψ〉 = −2πp

q
δ(x − Jh̄− δ)e−iq2Mνx

2/4πpeiε3x

×
∑
n

eiqnk〈x|T̂ (qMνx, qMνx)T̂ (2πnp, 0)|ψ〉

= −2πp

q
δ(x − Jh̄− δ)eiq2Mνx

2/4πpeiε3xeiq2M2
ν x

2q/4πpeinq2Mνx

×〈pNνx|T̂ (2πnp, 0)|ψ〉
= −2πp

q

1√
pNν

δ(x − Jh̄− δ)e−iq2MνNνx
2/4πe−iq2Mνnxeiε3x

×〈x|T̂ (2πn/Nν, 0)Ŝ(pNν)|ψ〉. (A.2)

Now we will compute the Fourier coefficients of̂O(k, δ)

ÔNM =
∫ 2πp/q

0
dδ eiqMδ/p

∫ 2π/q

0
dk eikNÔ(k, δ) (A.3)
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we find

〈x|ÔNM |ψ〉 = 4π2p

q

1√
pNν

eiqMνx/pe−iq2Mνnxe−iq2Mνx
2/4πpeiε3x

×〈x|T̂ (−2πN/Nν, 0)Ŝ(pNν)|ψ〉 (A.4)

which is identical to (4.12).
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